
International Journal of Advances in Engineering Research
70

TCP maintains many traffic control parameters to avoid the congestion .Standard TCP

mechanism deploy cubic, Westwood and similar high speed variants. The Multiplicative Increase

multiplicative Decrease (MIMD) congestion control algorithm in the form of scalable TCP has

been proposed for high speed networks. In this paper do comparison in the TCP Traffic control

capabilities. TCP', 'Westwood TCP', ‘CUBIC TCP’introduced in Linux Kernel 2.6 with Scalable

TCP (MIMD)

International Journal of Advances inEngineeringResearch http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

COMPARISON STUDY OF STANDARD TCP (AIMD)

AND SCALABLE (MIMD)

SarikaGupta ,Dr. Rajesh Pathak

Department of Computer Science,

ABSTRACT

INTRODUCTION

TCP provides the mechanisms that provide data to be transferred across networks that are

dynamic and have a large variety of resources. For instance congestion control keeps the network

resources from being overloaded without the need for specified information about network

resources. This allows for the network to be very scalable and autonomous which has most likely

been the reason for the success of the web. Without transmission control protocol, network

resources like core links could easily get congested or underutilized. TCP purposes to keep the

utilization of the link as high as possible by slowing down and speeding up each single

connection sharing the link[33].

TCP CONGESTION CONTROL ALGORITHMS

Standard TCP

Standard TCP uses congestion control algorithms described in RFC2581[1]. The algorithms used

are:

Slow Start
Congestion Avoidance

Fast Retransmit

Fast Recovery.

A TCP connection is always using one of these four algorithms throughout the life of the

connection.

http://www.ijaer.com/

International Journal of Advances in Engineering Research
71

International Journal of Advances inEngineeringResearch http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Slow start

TCP maintains a guess at the current reasonable window size, called the slow start threshold (or

ssthresh). Whenever TCP starts sending after being idle (or timing out) it would like to send with

a window of size ssthresh. It turns out to be a bad idea to send the entire window in a burst,

which might force a nearby router to buffer the whole window; far better to spread the window

over a round-trip time, so that they are stored in transit on the links. TCP accomplishes this using

this algorithm, called “slowstart”.

 Initialize the window size, CWND, to onesegment

 Whenever an ACK that acknowledges new data arrives (a “positive” ACK).Increase

CWND by onesegment

 If the resulting CWND is less than ssthresh, stay in slow-start. Otherwise,enter

congestion avoidancemode

This doubles CWND every round-trip time, so that TCP opens its window tcpsstresh in time

proportional to log sstresh instead of all at once.

A typical initial ssthresh, used when a TCP connection is first created, is 64Kilobytes. ssthreshis

adjusted after segment loss as describedbelow.

The second event is receiving the duplicate ACKs for same data. Upon receiving three duplicate

ACKs, the connection uses fast retransmit algorithm. The last event that can occur during slow

start is a timeout. If a timeout occurs, congestion avoidance algorithm is used to adjust

congestion window and slow startthreshold[31]

Congestion Avoidance

The data transfer of TCP starts from a slow start,in which TCP tries to increase its sending rate

exponentially, until it encounters the first loss. It then switches to another stage, called

congestion avoidance, in which TCP employs the Additive Increase ,Multiplicative decrease

mechanism to slowly adapt to the available bandwidth. On further congestion, the TCP goes into

the Fast Recovery &Fast Retransmission stages .In this scenario, when TCP do not receive an

acknowledgment for a packet after some timeout period, it assumes that this packet is lost. &

then retransmits that packet and doubles its retransmission timeout value(RTO) detecting packet

loss. This process continues until the packet is successfully transmitted & acknowledged. TCP

tries to clear congestion by cutting its sending rate inhalf.

Out of the many UNIX like kernels, Linux is a matured product and has a significant share in

worldwide server population dealing with TCP traffic under all kinds of traffic scenarios. Hence,

http://www.ijaer.com/

International Journal of Advances in Engineering Research
72

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

the TCP implementation in Linux has been tuned enough to meet the requirements of heavy duty

applications depending on it.

Additive Increment

After receiving an ACK for new data, congestion window is increment by

(MSS)2/Cwnd, where MSS is maximum segment size, this formula is known as additive

increment. The goal of additive increment is to open congestion window by a maximum of one

MSS per RTT. Additive increment can be described by using the equation (1):

Cwnd = Cwnd + a*MSS2/Cwnd (1)

where the value of a is a constant, a = 1.

Multiplicative Decrement

Multiplicative decrement occurs after a congestion event, such as a lost packet or a timeout.

After a congestion event occurs, the slow start threshold is set to half current congestion window.

This update to slow start threshold follows equation(2):

ssthresh = (1 – b)*CWND(2)

CWND is equal to amount of data that has been sent but not yet ACKed and b is a constant, b =

0.5. The congestion window is adjusted accordingly. After a timeout occurs, congestion window

is set to one MSS and slow start algorithm is reuse. The fast retransmit and fast

EXPERIMENTAL SETUP

We construct an asymmetric dumbbell sort of topology where two L2 switches are located at the

bottleneck between two end points. The end points consist of a set of HP Linux Systems running

custom client and server applications dedicated to high-speed TCP variant flows and background

traffic. Background traffic is generated by using various web based applications.

We use Linux hosts as communication end points communicating over 100Mbps link with MTU

of 1500 bytes. The RTT of each background traffic is random. The socket buffer size of some

client machines is fixed to default 64KB while high-speed TCP machines are configured to have

a very large buffer so that the transmission rates of high-speed flows are only limited by the

congestion control algorithm. Two Layer 2 switches are deployed with four high-speed TCP

machines which are tuned to generate or forward high traffic. Each TCP variant has been used

individually to analyze the performance aspects.

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

International Journal of Advances in Engineering Research
73

TCP Client

L2 Switch

L2 Switch

TCP Client

TCP Client

TCP Client

TCP Client

International Journal of Advances inEngineeringResearch http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

The custom Java Client and Server programs are used to generate and receive high traffic end to

end. The Server TCP suffers from high traffic ingress and has to take corrective and further

preventive action evident from the analysis. As the Linux 2.6 TCP has pluggable modules now,

we can inject and eject appropriate modules dynamically too.

The analysis has been done for TCP Westwood and TCP CUBIC individually and the results

have been compared. The packet sniffer tool „Wireshark‟ has been used to capture the live TCP

traffic and generate logs/reports. A comparative study has also been done for competing TCP

modules.

Experimental Linux 2.6 Testbed Layout

This paper is organized as follows. Section II presents different scenarios of TCP Traffic. Section

III deals comparative study between these scenarios. Possible future work and concluding

remarks are presented in section IV.

DIFFERENT SCENARIOS OF TCP TRAFFIC.

i) Westwood:-TCP Westwood develop two basic concepts: the end to end estimation of the

available bandwidth and the use of such estimate to set the slow start threshold and the

congestion window.

In TCP Westwood ,the sender continuously computes the connection Bandwidth Estimate

(BWE) Which is defined as the share of bottleneck bandwidth used by the connection BWE is

equal to the rate at which data is received to the receiver or rate of acknowledgementreceived

http://www.ijaer.com/

International Journal of Advances in Engineering Research
74

if(Coarse timeout expires)

cwin=1

ssthresh=(BWE * RTTmin)/seg_size;

If (sstresh<2)

ssthresh=2

endif

endif

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

After 3 duplicate packet received(packet loss indication) the sender resets the congestion

window and the slow start threshold based on BWE cwin=BWE*RTT. RTT is also required to

compute the window that support the estimated rateBWE

Initially congestion window increments during slow start and congestion avoidance remain the

same as in Reno, that is they are exponential and linear, respectively. A packet loss is indicated

by (a) the reception of 3 duplicate acknowledgements or (b) a expiry of Round Trip Time.

TCPWestwood set cwin and ssthresh as follows

If (3 DUPACKs are received)

ssthresh=(BWE *RTTmin)/seg_size

if(cwin>ssthresh) /* congestion avoidance*/

cwin=ssthresh

Endif

Endif

In case a packet loss is initiated by a time out expiration. cwin and ssthresh are set as follows:

Analysis OfWestwood:-

Fig : RTT Graph for TCP Westwood(TCPW)

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

International Journal of Advances in Engineering Research
75

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

In the analysis of TCPW, we use Linux hosts as communication end points communicating over

100Mbps link with MTU of 1500 bytes. The RTT of each background traffic is random. The

socket buffer size of some client machines is fixed to default 64KB.

As per the graph shown, the minimum RTT was around 0.001 sec and maximum RTT was

around 1sec

We can calculate the capacity of the pipe ascapacity (bits) = bandwidth (bits/sec) × round-trip

time (sec)

This is normally called the bandwidth-delay product. This value can vary widely, depending on

the network speed and the RTT between the two ends.

On similar pattern, TCP Westwood Congestion Control is based on -

(1) congestion window(cwnd)

(2) slow start threshold(ssthresh)

(3) round trip time of the connection(RTT)

(4) minimum round trip time measured by the sender(RTTmin).

We compare two high-speed flows with a different RTT i.e. AIMD and Westwood. We observe

the RTT of both cases as different and check which one is better RTT fair. As per our analysis

around small window sizes, TCPW shows the RTT unfairness. TCPW has window sizes around

200 for 100Mbps. Nonetheless, its RTT unfairness is much better than AIMD where we get a

random RTT scenario.

TCPW in Linux can better handle the congestion scenario under excess traffic. The RTT

observed is less but the number of segments are also low. This shows the combative state of TCP

while the socket receive buffers get continuously overflowed. It shows as if a large number of

SYN segments have been dropped either by socket receive buffer or the congestion window

sizing.

Fig : Throughput Graph for TCP Westwood(TCPW)

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

International Journal of Advances in Engineering Research
76

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

In the analysis of TCPW Throughput, we use Linux hosts as communication end points

communicating over 100Mbps link with MTU of 1500 bytes. The RTT of each background

traffic is random. The socket buffer size of some client machines is fixed to default 64KB.

The random bursts of data attack on the socket receive buffers and TCP enters into congestion

avoidance mode.

The graph shows that there is an effort to attain a steady state throughput due to Westwood

algorithm. There are apparent traces showing the congestion window to become ¾ of the current

congestion window.

The throughput touches the peak of 312.5 kbps with an immediate corrective congestion window

size afterwards. The nature of the output traffic is almost steady state as there are no sharp

increases like Reno and periodic wedges like vegas and it far better matches the objectives of the

congestion control algorithm. The nature is less self similar in the trace received by us till the

congestion collapse was finally achieved.

TCP Westwood Congestion Control is based on -

(1) congestion window(cwnd)

(2) slow start threshold(ssthresh)

(3) round trip time of the connection(RTT)

(4) minimum round trip time measured by the sender(RTTmin).

The stream of returning ACK packets infer an estimate of connection available bandwidth

(BWE).

At the point of congestion,

When 3 DUPACKs are received by the sender

:ssthresh = (BWE * RTTmin) / MSS;

if (ssthresh<2) ssthresh=2;

cwnd = ssthresh;

Here,

RTTmin = 0.001 sec (observed)

MSS = 512 B

BWE = 200 B (on an average)

ssthresh = (200*0.001)/512 < 2

Hence ssthresh = 2

cwnd = 2

This way TCPW in Linux handled a congestion scenario.

On the downside, the throughput does not seem to follow sharp 'additive increase' in congestion

window like Reno and not even like pure AIMD+Vegas. This can be less useful in case of high

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

International Journal of Advances in Engineering Research
77

International Journal of Advances inEngineeringResearch http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

speed networks. The congestion window has become more sensitive to congestion but less

aggressive in following 'additive increase'. A peak is observed but a sharp fall follows due to

decrease effect.

The graph clearly shows that the congestion happened after 180 sec and the congestion window

cautiously controlled it, finally showing a 'multiplicative decrease'. This performance is far better

than all the previously analyzed TCP versions.

As the link bandwidth increases, the measurement-based nature of TCPW allows it to track the

bandwidth variations of the bottleneck and to linearly build-up its performance. AIMD also

improves its performance in same situation but in a less considerable way.

v) TCP CUBIC:-As name suggest it implement cubic function. CUBIC is designed to simplify

and enhance the window control of BIC .

Wcubic =C(t-K)
3
 + Wmax

C = scaling factor

t = elapsed time from the last window reduction.

Wmax = window size just before the last window reduction.

K=Wmaxß/C where ß is a constant multiplicative decrease factor applied towindow

reduction at the time of loss event (i.e.the window reduces to ßWmax at the time of the last

reduction).

In this the window grows very fast upon a window reduction but as it gets closer to Wmax ,it

slows down the growth. Around Wmax , the window increment becomes zero. Above that,

CUBIC starts probing for more bandwidth in which the window grows slowly initially,

accelerating its growth as it moves away from Wmax .

K= Wmaxß/C where ß is a constant multiplicative decrease factor applied to window

reduction at the time of loss event (i.e.the window reduces to ßWmax at the time of the last

reduction)

In this the window grows very fast upon a window reduction but as it gets closer to Wmax ,it

slows down the growth. Around Wmax , the window increment becomes zero. Above that,

CUBIC starts probing for more bandwidth in which the window grows slowly initially,

accelerating its growth as it moves away from Wmax.

Analysis of TCP CUBIC:-

In this section, we compare the performance of Linux CUBIC TCP w.r.t. AIMD. In the analysis

of CUBIC,we use Linux hosts as communication end points communicating over 100Mbps link

with MTU of 1500 bytes. The RTT of each background traffic is random. The socket buffer size

of some client machines is fixed to default 64KB.We evaluate CUBIC-TCP and AIMD for the

bandwidth utilization and RTT.

http://www.ijaer.com/

International Journal of Advances in Engineering Research
78

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Fig 19: RTT Graph for TCP CUBIC

As per the graph shown ,the minimum RTT was around 0.001 sec and maximum RTT was

around 0.18.

The congestion window of CUBIC is determined by

Wcubic=C(t-K)
3
+Wmax

Where,

C=Scaling Factor

t=elapsed time from the last window reduction.

Wmax =window size=β/C

K=3

β= Constatnt Multiplication window decrease factor.

t=0.18

C=0.4 and β=0.8[10]

K=3 65535*08/04=50.7965

Wcubic=0.4(0.18-50.7965)+65535

=13662.601 or 13663 approx.

In this Graph we observe that, CUBIC starts probing for bandwidth in which the window grows

slowly initially, accelerating its growth as it moves away from Wmax. This slows growth Wmax

enhances the stability of the protocol,and increases the utilization of the network while the fast

growth away from Wmax ensures the scalability of the protocol

http://www.ijaer.com/
http://www.ijaer.com/

International Journal of Advances in Engineering Research
79

International Journal of Advances inEngineeringResearch http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Fig: Throughput Graph for TCP CUBIC

CUBIC TCP achieves greater utilization then standard duTCP . The Graph shows that there is

almost steady state due to CUBIC. The highest peak of throughput goes to 105000B/s and with

an immediate corrective congestion window size afterwards. Earlier there was some sharp

increase and then CUBIC maintains steadystate.

Unlike AIMD,Cubic increases the window Wmax very quickly and then holds the window for a

long time . This keeps the scalibilty of the protocol high,

.

Scalable TCP

In the Internet, data transfer protocols use various congestion control algorithms to achieve

ratercontrol. Until now the AIMD algorithm was found to provide satisfactory performance.

However, in high speed networks, the additive increase in the sender‟s rate may lead to

inefficient link utilization. To overcome this drawback in high speed networks, the MIMD

algorithm has been proposed as an alternative to the AIMD algorithm.[1] Standard TCP use

AIMD but scalable TCP uses a MIMD(Multiplicative Increase and Multiplicative Decrease.)

.

1 Congestion Avoidance

Scalable TCP uses a different congestion avoidance algorithm than Standard TCP. Scalable TCP

uses a multiplicative increment multiplicative decrement (MIMD) rather than the AIMD of

Standard TCP

Multiplicative Increment

The multiplicative increment occurs when standard additive increment would normally occurs.

In equation (8) shows the formula used to adjust congestion window after receiving a new ACK.

Cwnd = Cwnd + a*Cwnd(3)

where a is adjustable, the value of a used was 0.02.

http://www.ijaer.com/

International Journal of Advances in Engineering Research
80

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Multiplicative Decrement

The multiplicative decrement is same as Standard TCP except that the value of b in equation (2)

is adjustable, the value of b used 0.125.

The connection starts in the slow start algorithm until channel is filled. The connection uses the

multiplicative increment portion of congestion avoidance to adjust congestion window. After a

single drop occur around 1.4 seconds, fast retransmit and recovery algorithms are used to cut

congestion window by 0.125, the value of b, and congestion avoidance is used again to reopen

congestion window

COMPARISON BETWEEN STANDARD TCP AND SCALABLE TCP

Comparison between Standard and Scalable TCP

 Standard

TCP(AIMD)

Scalable TCP(MIMD)

no

losses

Wn+1=Wn+1=

linear increase

dw/dt=1/T

Wn+1= *Wn

dW/dt=log[]/T*W

=exponentialgrowth

≥1

loss

Wn+1=0.5*Wn

multiplicative

decrease

Wn+1= *Wn

multiplicative decrease

Throughput Comparison of AIMD and MIMD

We now study the scenario user and AIMD user shares the same link. We note that each user can

initiate several sessions of the same algorithm. We obtain the condition under which the AIMD

user can a obtain better throughput than the MIMD user. First, we consider the case in which

each user initiates only one session. In such a scenario, the window size andthe

throughput of each session is obtained from (31)-(33) with l = 2 and k = 1. From (33) and (34),

as Λ → ∞ (i.e.,C→ ∞), the ratio of the throughputs, η2/η1, goes to0.

This suggests that in high-speed networks, the MIMD userwill get most of the capacity. On the

other hand, if the BDP of the network is small, the MIMD user will obtain a lower

throughput compared to the AIMD session.

In this Fig, the window evolution is plotted for the twosessions for C = 13Mbps and βm = 0.5.

The BDP, Λ,is less than the Λl. The AIMD algorithm obtains a betterthroughput in this case.

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

International Journal of Advances in Engineering Research
81

International Journal of Advances inEngineeringResearch http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Fig: Window evolution for one MIMD session and one AIMD session

setβmto its recommended value of 0.875. In Fig. 24(b), the corresponding window evolution is

plotted. The effect of increasing βm is to reduce the share of the AIMD session. a comparison of

the values obtained from analysis and simulations is presented. A good match is observed

between the analysis and simulations.it was observed that the throughput obtained

by each AIMD session remains constant whereas the total throughput of the MIMD sessions

increases with increase in capacity. An AIMD user may want to obtain throughputssimilar to a

MIMD user. In this case, the AIMD user may open several sessions in order to improve its

observed throughput. Since each AIMD session gets the same throughput independent of the

number of AIMD sessions (assuming there is sufficient capacity), an AIMD user can improve its

observed throughput by opening multiple sessions.

In networks with sessions using MIMD algorithms, a stream of rate dependent losses, using, for

example, some buffer management scheme, would be necessary to ensure fair sharing.

It was also observed that an AIMD user could open multiple sessions in order to improve its

observed throughput whereas for the MIMD user the throughput was invariant to the number of

sessions it opened.

CONCLUSION

.TCP WESTWOOD

http://www.ijaer.com/

International Journal of Advances in Engineering Research
82

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

In this work, we analyzed the TCP Westwood (TCPW) protocol in Linux. TCPW is a new TCP

scheme, which requires modifications only in the TCP source stack and is thus compatible with

TCP Reno and Tahoe destinations. Basically it differs from Reno in that it adjusts the

cwin(congestion window) after a loss detection by setting it to the measured rate currently

experienced by the connection, rather than using the conventional multiplicative decrease

scheme.

We have analyzed with qualitative arguments and with experimental results that the Linux

TCPW converges to “fair share.” At steady state under uniform path conditions. One general

concern with is compatibility towards current implementations. Linux TCPW exhibits some

“aggressiveness” due to its unique window adjustment. However, if there is adequate buffering

at the bottleneck, TCPW and Reno share the channelfairly.

The Linux implementation was developed in order to combat in presence of random errors and

under different scenarios. However, unlike previous TCP versions, the TCPW addresses the

bandwidth estimation mechanism and its impact on system behavior. The results show that, for a

single connection case, Linux TCPW protocol performs better than or, at least, as well as Linux

TCP Reno in terms of congestion avoidance. The results also show that TCPW is more robust

under varying buffer size, round trip delays and bottleneck bandwidth. The multiple connections

case is under investigation and will be considered in the near future.

TCP CUBIC

We analyzed Linux TCP CUBIC which simplifies the BIC-TCP window control and improves

its RTT-fairness. CUBIC uses a cubic increase function in terms of the elapsed time since the

last loss event. In order to provide fairness to Standard TCP, CUBIC also behaves like Standard

TCP when the cubic window growth function is slower than Standard TCP. Furthermore, the

real-time nature of the protocol keeps the window growth rate independent of RTT, which keeps

the protocol TCP friendly under both short and long RTT paths. Through extensive testing, we

confirm that CUBIC tackles the shortcomings of BIC TCP and achieves fairly good congestion

avoidance

SCALABLE TCP(MIMD):-

Scalable TCP implements simple changes to the currently used congestion control algorithm.

These changes have both a positive and negative effects on the existing network traffic. Each

algorithm provides higher channel utilization for high speed and long delay environment.

However, the alternative algorithms do not shares channel equally, when mixed with Standard

TCP traffic. In a homogenous environment, the overall channel utilization and sharing between

streams increments as compared to a mixed environment. Future work is needed to study the

effects of more than two competing streams

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

International Journal of Advances in Engineering Research
83

International Journal of Advances inEngineeringResearch http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

REFERENCES

1. Allman, M.V. Paxson, and W.Stevens, (1999),‟ TCP congestion Control,‟ Request for

Comments, RFC2581.

2. Andrea Zanella, Gregorio Procissi, Mario Gerla,M.Y. “Medy” sanadidi „ TCP

Westwood: Analytic Model and PerformanceEvaluation‟

3. D.J.Leith and R.N.Shorten(2006) „ Impact of drop synchronization on TCP fairness in

high bandwidth-delay product networks.‟ Workshop on Protocols for Fast Long Distance

Networks, Nara,Japan.

4. D.J.Leith(2003) „Linux Implementation issues in high speed networks.‟ Hamilton

Institute technical Reportwww.hamilton.ie/net/LinuxHoghSpeed.pdf.

5. D.J.Leith, R.N. Shorten, G.McCullagh, (2005) „Experimental evaluation ofCUBIC-TCP‟

HamiltonInstitute,Ireland.

6. D.-M. Chiu and R. Jain,(1989), „Analysis of the Increase and Decrease Algorithms for

Congestion Avoidance in Computer Networks,‟ Computer Networks and ISDNSystems,

vol. 17, no. 1, pp. 1

7. Evandro de Souza,debAgarwal „ A Highspeed TCP study:Characteristics and

Deployment Issues‟ Lawrence Berkeley National Lab, Berkeley, CA,USA.

8. FEDORA 11. [Online]. Available:http://fedora.redhat.com

9. HabibullahJamal,Kiran Sultan (2008) „Performance Analysis of TCP Congestion Control

Algorithims‟ International Journal of Computers and Communications. Issue 1, Vol2.

10. Injong Rhee, and LisongXu „ CUBIC: A New TCP-Friendly High Speed TCP Variant‟

LincolnNE68588-0115USA

11. J. C. Hoe,(1996) Improving the start-up behavior of a congestion control scheme of

TCP,” ACMComputer Communication Review, vol. 26, pp. 270–280, Oct.1996.

12. J. Nagle, (1984), „Congestion Control in IP/TCP Internetworks," IETF RFC896

13. JeonghoonMo,RichardJ.La, VenkatAnantharam, and Jean Warland (1998) „Analysis and

comparison of TCP Reno and Vegas‟eecs.berleley.edu.

14. JitendraPadhye,victorFiroiu,DonaldF.Towsley, James F.Kurose(2000). „Modeling TCP

RenoPerformance : A Simple Model and its Emperical Validation‟ IEEE/ACM

Transaction on Networking Vol.8.No.2. April2000

15. Joachim charzinksi,(2000) „HTTP /TCP connection and flow characteristics.Vol.42

issues2-3

16. K.Fall and S.Floyd. (1996)„ Simulation-based Comparisons of Tahoe, Reno, and SACK

TCP ACM Computer Communication review26(3)

http://www.ijaer.com/
http://www.hamilton.ie/net/LinuxHoghSpeed.pdf
http://fedora.redhat.com/

International Journal of Advances in Engineering Research
84

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

17. L. S. Brakmo, S. W.O‟Malley, and L. L. Peterson, (1994) „TCP Vegas: New techniques

for congestion detection and avoidance‟ ACM SIGCOMM’94.

18. LisongXu, khaledHarfoush, and Injong Rhee „ Binary Increase Congestion Control for

Fats Long Distance Networks‟ NSF CAREER ANI-987651,NSFANI-0074012

19. Luigi A. Grieco and SaverioMascolo,(2004)„ Performance Evaluation and Comparisonof

Westwood+, New Reno, and Vegas TCP Congestion Control‟ ACM CCR,vol.34No.2.

20. M.Fisk and W Feng, (2001) „Dynamic right-sizing in TCP, Los Alamos Computer

Science Institute Symposium,

21. MarioGerla. M.Y.Sanadidi,Ren Wang and Andrea Zanella, Claudio Casetti „ TCP

Westwood: Congestion Window Control Using Bandwidth Estimation‟ Computer

Science Dept., University of California, Los Angeles(UCLA)

22. PasiSarolathi, Alexey Kuznetsov(1999) „Congestion Control in Linux TCP‟ IEEE/ACM

Transaction on NetworkingVol.8.No.2.

23. R. Stevens,(1994), „TCP/IP Illustrated,’ Volume 1: The Protocols.Addison-Wesley,

24. S S.ShenkerL. Zhang, and D. D. Clark, (1990)„Some observations on the dynamics of a

congestion control algorithim‟ ACM Computer Communication Review, vol. 20, pp. 30–

39,

25. S.Floyd (Dec,2003) „Highspeed TCP fro Large Congestion Windows‟ RFC3649

26. S.Keshav,(2002), „An engineering approach of ComputerNetworking‟

27. SangtaeHa,Injong Rhee, LisongXu (2005)„ CUBIC: A New TCP Friendly High-Speed

TCP Variant‟ nscu.edu

28. SaverioMascolo and Francesco Vacirca (2001), „Issues in Performance Evaluation of

New TCP Stacks in HighSpeed‟.

29. Steven Low, Larry Peterson and Limin Wang Princeton University (February ,2000) „

Understanding TCP Vegas: Theory and Practice‟ TR616-00

30. T. Iguti, G. Hasegawa, and M. Murata (2005), „A new congestion control mechanism of

TCP with inline network measurement‟ The International Conference on

InformationNetworking (ICOIN) 2005, pp.109–121,

31. VanJacobson,(1988),„CongestionAvoidanceandControl‟,ProceedingsoftheSigcomm '88

Symposium, vol.18 (4): pp.314–329. Stanford,CA.

32. Kulvinder Singh„ Experimental Study of TCP Congestion Control Algorithms‟ IJCEM

International Journal of Computational Engineering & Management, Vol. 14, October

2011

33. M. Christiansen, K. Jeray, D. Ott, and F. D. Smith, Tuning RED for web traffic," in Proc.

of ACM SIGCOMM'00, (Stockholm, Sweden), September2000

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

